
Fight Component

Documentation

Documentation version: 1.1.1

(ENG)

1. Introduction:

The FightComponent project was specifically designed to provide developers with a

lightweight and flexible hand-to-hand combat system, the feature of which is its ease of

integration into any project.

This product contains:

Base character class "Character" - The character was based on the base Character

class, as well as the basic CharacterMovement movement for ease of use.

Health system - Demo health system implemented for example of taking damage.

Damage system - The ability to injure one or more opponents, depending on their

distance from the character.

Stealth Assassination System - Thanks to this feature, the character has a chance to

quickly and quietly remove his opponent.

Impact blocking system - The basic system of blocking a blow, thanks to which the

character receives damage several times less than the original.

Guidance system - Automatic system of aiming and keeping the target in the

character's field of vision.

Artificial Intelligence - A basic AI that can see, hear, search, attack, dodge, block, and

stealth kills.

2. Modifiable and immutable parameters of the

component FightComponent:

2.1 Edit

This list contains several sub-lists, which contain the main variable parameters of the

component. These parameters can be changed both dynamically and before the start of the

game.

Character Structure- Contains two structures responsible for stealth kill animations. In

this sublist, you can set or change the stealth kill animations for both the front side and the

back.

Constant- The main variables responsible for life, auto guidance and speed of the

character.

Health - Character lives

Constant look at enemy - The distance at which the character can aim at the enemy

(IMPORTANT!!! The value of this variable must not exceed the value of the field of

view AiPerception! (Sight Radius)).

Constant Distance for Stealth Kill - The maximum distance between the character and

the target, in which it is possible to make a stealth kill.

Constant FS Speed - The maximum speed of movement of the character in a combat

stance.

Constant W Speed- Maximum movement speed in a relaxed stance.

Team- Contains an array of friendly names that cannot be targeted or inflicted any

damage, and also contains a boolean variable Friendly Fire, thanks to which it becomes

possible to deal damage to friendly characters, but it remains impossible to target and play

a stealth kill.

2.2Non Edit

It contains sublists of different types of parameters, into which it is STRONGLY

FORBIDDEN to make any changes. Changes to these parameters are made automatically

depending on the situations and interactions of the character.

Character- Variables that contain the owner of the component (character), as well as the

purpose of this owner.

Bool- Boolean variables responsible for enabling / disabling certain states of the character.

Front- Variable responsible for choosing the closest side to play a stealth kill.

Fight System -Variable responsible for the state of the character. Whether he is in a

fighting stance or relaxed.

Turn to Enemy- Smooth movement of the character to the target for correct

reproduction of stealthy murder.

Stealth kill- Variable responsible for the reproduction of a stealth murder. Whether a

stealth kill is currently being played.

Death- The state of the character. Alive or dead character.

Block -Variable responsible for the state of blocking strikes. Whether the character is

blocking the opponent's attacks at the moment.

Stealth dead- Whether the character is currently a victim of a stealth murder.

Disable AI- Variable that is responsible for disabling / enabling AI. Disabled during

stealth kill or death.

Attack- Whether the character attacks with normal attacks.

AI Stealth Kill- A variable that is responsible for the ability to reproduce covert murder

by artificial intelligence.

AI Allow Strafe- Can artificial intelligence dodge a blow flying in its direction.

Debug- A variable responsible for enabling / disabling FightComponent debugging.

2.3Tags

Component Tags- An array of names that are assigned to a character for convenient

division into teams (for example, the Player command is assigned to a playable character,

which makes it possible to attack all other characters except friendly ones (if Friendly

Fire is not enabled). You can also assign more than one command, but several (take a look

on Component Tags of neutral AI)).

3.Parameters of the game character Parent_Player:

3.1Character Movement

In the player character, the base class CharacterMovement from Epic Games is

responsible for the movement system. In this regard, all movement parameters are

configured in this component. The following parameters have been changed in the

CharacterMovement to make the FightComponent function correctly:

AirControl= 0.2
MaxAcceleration= 1024

MaxWalkSpeed= 160

IgnoreBaseRotation= True

RotationRate= 0.0; 0.0; 540.0;

UseControllerDesiredRotation= True

Also in the game character's ClassDefaults UseControllerRotationYaw = False

IMPORTANT!!!!

Several CharacterMovement parameters change dynamically during gameplay, such as:

MaxWalkSpeed = 160/85 Changed in the FightComponent of the

boolean variable FightSystem depending

on which stance the character is in.

UseControllerDesiredRotation = True /

False

Changed in AnimBP_Player boolean

variable IsAccelerating depending on the

state of movement. Whether the character

is standing still or not.

3.2AIPerception

In the playable character, AIPerception is only used to find the nearest target and focus on

it. For this, only one basic AISense_Sight config is set in SensesConfig. For comfortable

use of the FightComponent, the following values were chosen:

SightRadius -910.0

LoseSightRadius -920.0

PeripheralVisionHalfAngleDegrees -90.0

DetectionByAffiliation -

Detect Enemies - True

Detect Neutrals - True

Detect Friendlies - False

AutoSuccessRangeFromLastSeenLocation --1.0

MaxAge --1.0

StartsEnabled - True

3.3 collision

The CapsuleComponent collision has not been changed and is defaulted.

Mesh collision was also almost unaffected, except for disabling collision in

CollisionEnabled = No Collision.

3.4Hitboxes

3.4 Hitbox

Hitboxes are used to register a hit on a character or enemy. Own hitboxes were

created in order to optimize the calculation of the target hit.

Hitbox collision is set to register absolutely all objects overlapping them.

There are 10 hitboxes on the character's entire body for full coverage.

Hitbox_Body

Hitbox_Upperarm_R

Hitbox_Lowerarm_R

Hitbox_Head

Hitbox_Upperarm_L

Hitbox_Lowerarm_L

Hitbox_Calf_R

Hitbox_Thigh_R

Hitbox_Calf_L

Hitbox_Thigh_L

3.5ArrowComponent

Arrows attached to the CapsuleComponent serve as the position and direction

for the stealth kill. In the game character, as well as in the AI, there are only

two of them:

Front- the front side of the character.

Back- the back of the character.

These arrows can be much more, depending on the types of stealth killings and their

directions.

4. Artificial intelligence:

4.1Parent_AI

The AI was based on the base Character class from "Epic Games". Parent_AI also uses

the base controller AIController (All the logic for launching and operating the AI is

written in the Parent_AI itself). In this AI class, the basic parameters that the

FightComponent uses have been set and configured.

FightComponent

AIPerception

ArrowComponent (Front; Back)

BI_Fight

Custom ClassDefaults

Custom CharacterMovement

Since this is the parent AI class and does not have a Mesh, there is no hitbox collision.

4.1.1 Parent_AI variables

The parent AI class Parent_AI has only two available and editable variables.

AI_AllowStrafe- boolean variable that allows / prohibits the AI to evade enemy strikes.

AI_SteathKillIs a boolean variable that allows / disables the AI to play stealth kill.

4.2 AI brain

It was decided to use Behavior Tree and Blackboard as the basis for AI control.

4.2.1AI_BT (Behavior Tree)

In this tree of behavior, you can see all the capabilities of Artificial Intelligence, such as:

death, shutdown, search, attack.

4.2.2AI_BB (Blackboard)

All keys used can be seen on this AI board.

Target - Purpose.

Self -Link to yourself.

SpawnVector- the place where the AI appeared.

Vector -dynamic location variable where the AI can go (e.g. rustle).

MoveToVector -the variable responsible for the ability to get to the location, which is

set in the Vector variable.

AllowStrafe- the ability to evade enemy strikes.

4.2.3 AI Decorators

In the FightComponent project, the AI has two decorators that enable or disable the

behavior of the AI.

BTDecorator_Death- Checks if the AI is alive.

BTDecorator_DisableAI- Checks the AI for activity (for example, the AI is

disabled during stealth kill or stealth death).

4.2.4 AI Services

In the FightComponent project, the AI has two services that execute the secondary AI

logic.

BTService_CheckDistance- Checks the distance to the target and attacks.

BTService_SearchEnemy- Looking for a new closest target.

4.2.5 AI Tasks

In the FightComponent project, the AI has two tasks that perform the basic logic of the

AI.

BTTask_DestroyAI- Disables and removes AI upon death.
BTTask_Strafe- Finds a new position before dodging a blow.

4.3 AI Spawner

The FightComponent project also contains special AI spawners with some tweaks.

Amount- the number of AI that will be

spawned (max - 5).

AI- AI choice (e.g. friendly).
SpawnOnOverlap- AI spawn after the

character crosses the trigger.

Also, all AIs that have been spawned will be written to a separate AIMassive array for

easy manipulation with them.

The AI spawner includes components such as:

Box - an area of a certain size on which the AI can be spawned.

TextRender - the name of the spawner.

Billboard - spawner icon

Sphere - a trigger upon crossing which the AI will spawn.

Arrow - the direction of spawn AI

5.Blueprint interface “BI_Fight”:

This interface is used for easy access to commonly used components and parameters of a

character or target.

The interface has only 6 required functions.

Arrows- function for passing

direction arrows

ArrowComponent
(In this case, Front and

Back)

FightComponent- a function

to pass the entire

FightComponent.

AIPerseprion- a function to

pass the entire component

AIPerception

Camera- function for

passing Camera and

SpringArmComp

Death- Function for passing

a boolean parameter of the

character's death.

DisableAI- a function for

passing a boolean parameter

to disable the AI.

(Only used in AI)

6.Anim Notify:

6.1 AN_Damage

AN_Damage- is responsible for the appearance of collision impact (Calls DamageRadius

in FightComponent) and is located in animations.

Also AN_Damage has a parameter - a structure that includes

BoxExtent- The size of the collision.

Distance- Distance of the collision appearance from the initiator.

Height- The height of the collision appearance from the initiator.

Damage- Damage.

DirectionOfImpact- Impact side.

6.2 AN_PlaySound

AN_PlaySound- is located in animations and is responsible for the appearance of

surround sound in the world.

It includes parameters such as:

WillAIHear?- Can the AI hear this sound?

Loudness - Sound volume.

MaxRange - Maximum sound range.

Sound- Sound.

VolumeMultiplier- Volume multiplier.

PitchMultiplier- Pitch multiplier.

SwitchNameInCue- Switch titles in the installed Cue.

SwitchType- Sound selection.

6.3 AN_StealthDamage

AN_StealthDamage- Located in animations and is responsible for the damage done to the

target during a stealth kill (Calls ApplyDamage from FightComponent). Inside it is a

parameter such as:

Kill?- Kills the target in the final hit of a stealth kill.

7.Animation Blueprint:

The FightComponent project uses the animation blueprint AnimBP_Parent_Character

to control character animations. It contains the parameters and logic required for proper

functioning.

 7.1 EventGraph

Inside EventGraph is the main logic for initializing and updating parameters. In

initialization, the main variables are set, such as:

Character- Link to the owning character.

FightComponent- Link to FightComponent.

The following basic variables are updated every frame:

IsInAir? - Boolean variable that checks if the character is in the air.

IsAccelerating- Boolean variable that checks if the character is moving.

FightSystems- Boolean variable that checks if the character is in combat stance.

Velocity -Velocity change in vector.

Direction- Direction of movement.

Speed- Speed.

Lean- Leaning in the direction of the jump.

7.2 AnimGraph

Inside AnimGraph there are animations that change depending on the state of the

variables.

Locomotion SM is a State Machine, inside of which the main movement animations are

located. Cache Pose is used to play AnimMontage (in our case, this is animation of strikes,

blocks and stealth kill).

8.Own collision profile:

For the correct functioning of the FightComponent project, it was decided to add its own

DeadPawn collision profile, which is used after the death of the character. This profile

does not have any collision and ignores all objects that intersect it.

9.Integrating FightComponent into another project:

You can watch a video with the integration of FightComponent in another

project on YouTube: https://www.youtube.com/watch?v=ewy3_uphjAg&t=342s

For example, let's take the ready-made ThirdPerson project from “Epic Games” and

integrate FightComponent into it.

 9.1 Creating your own clash profile

The first step is to immediately create a custom DeadPawn collision profile. To do this,

open Edit -> Project Settings .. -> Collision -> Preset -> New ...

https://www.youtube.com/watch?v=ewy3_uphjAg&t=342s

Change all parameters of the collision profile as shown in the example and click the

“Accept” button.

After clicking the “Accept” button, you should have a new collision profile in the “Preset”

list:

9.2Moving the FightComponent to Your Project

After successfully creating your own clash profile, you can move on to bringing the

FightComponent into your project. To do this, create a new FightComponent project,

open it, go to the FightComponent folder, right-click on the Core folder and select the

“Migrate” button.

After that click "OK", find your project in the explorer and select the "Content" folder.

If you did everything correctly, then you should see the following notification:

Next, open the FightComponent located in Content -> FightComponent -> Core ->

Blueprints -> Component and compile it.

9.3 Customization of the game character.

Now that you have a FightComponent in your project, you can start customizing your

game character. To do this, open your character, and also open the Parent_Player

character, which is located in Content -> FightComponent -> Core -> Blueprints ->

Player.

In your character, click the “+ Add Component” button and add a FightComponent as

well as an AIPerception.

Since the FightComponent is configured automatically, you only need to add the Player

tag. To do this, click on the FightComponent, find the Tags tab, click on the “+” and

enter Player in the line that appears.

When you're done setting up the Tags in the FightComponent, click on the

AIPerception. In the opened tabs find AI Perception, which will contain the Senses

Config parameter and click on the “+”. Next, you must select AI Sight Config, and also

open the tab that appears. After that, you need to configure this config as shown in the

example:

Next, you need to add ArrowComponent arrows to your character, which are responsible

for the location and direction of the stealth kill. To add them, you need to click on the "+

Add Component" button again

and enter “Arrow” in the search.

Add two arrows to your character and rename them Front and Back.

(IMPORTANT!!! Both arrows added must be children of the CapsuleComponent!)

Select any arrow and, depending on its direction, change its “Location” and “Rotation” in

the “Transform” list.

Front

Back

Now that you are done with the settings for the main components, you should add the

BI_Fight interface to your character. To do this, open Class Settings, find the

“Interfaces” tab, click on the “Add” button, and select BI_Fight.

After that, you should compile your character again. After successful compilation, you

will see that on the left side of the screen your character has a list of “Interfaces”.

Now your task is to fill in all these interface functions. How to fill them is shown below:

DisableAI

Death

Camera

AIPerseption

FightComponent

Arrows

When you're done setting up all of the above components, you'll need to add hitboxes to

your character. To do this, open Parent_AI and copy all the hitboxes into your character

by first clicking on the Mesh component (this is necessary in order for the hitboxes to

become children and inherit the animation of the skeleton). You should have something

like this:

Now your task is to set up these hitboxes the same as in the game's Parent_Player

character (Name, size, parent socket, location).

A video detailing how this is done can be viewed here: https://youtu.be/Brtx41XbwjY

https://vk.com/away.php?to=https%3A%2F%2Fyoutu.be%2FBrtx41XbwjY&cc_key=

Now that the character is fully configured, all that remains is to transfer control from the

Parent_Player to your character.

9.4 Configuring Animation Blueprint.

Since the character has been fully configured, now you should go to animations and

AnimBP_Parent_Character, but before that you should retarget the FightComponent

skeleton to the skeleton of your game character. To do this, go to Content ->

FightComponent -> Core -> Animations -> Manequin -> Character -> Mesh.

Right click on the UE4_Mannequin_Skeleton skeleton and click on “Retarget to another

skeleton”.

In the window that opens, select the skeleton of your character and click “Retarget”.

If your skeleton is not in the list, open the skeleton of your character, as well as the

skeleton of the FightComponent character, go to Retarget Manager and set Select Rig to

Humanoid in both skeletons.

After that, your character's skeleton should appear in the list.

If the characters ' poses are different, then you need to go to the FightComponent

skeleton again, open the Retarget Manager section, click the Modify Pose button and

select Use Current Pose (If the skeleton is in the T-pose in Viewport, then before clicking

the Modify Pose button, you must click the View Pose button to change the pose to the A-

pose).

Now you can make a Retarget.

IMPORTANT!!!! (After retargeting to your skeleton, you should change “Skeletal Mesh”

in Parent_AI_Human to your “Skeletal Mesh”, and also select “Anim Class”

AnimBP_Parent_Character)

After these manipulations, you can proceed to setting up the animated blueprint. Open

AnimBP_Parent_Character (Content -> FightComponent -> Core -> Animations) and

also your animated blueprint for your character.

Copy the variable initialization logic and paste your character into AnimBP.

Also copy the logic that updates every frame and paste it into your animation blueprint (If

your logic has similar variables with FightComponent, just skip them).

Copy the FightComponent blendspaces and animations, and paste them into your

AnimBP (repeat this for each “State”).

Since the Anim Montages use the “DefaultSlot”, create and connect the “DefaultSlot”

Slot in your animation blueprint.

If all steps were completed without errors, then the integration of FightComponent to

your project was completed successfully!

